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“Cogito ergo Sum” – “I think, therefore I am”

René Descartes (1596–1650)

“Success is not final, failure is not fatal, it is the courage to continue that counts.”

Winston Churchill (1874–1965)

“I can see that without being excited, mathematics can look pointless and cold. The beauty of

mathematics only shows itself to more patient followers.”

Maryam Mirzakhani (1977–2017)
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Calculus 1 101

5.4 Derivatives, integrations, and graphs (part 2)

1. Show that y = x
1
3 has an inflection point at (0, 0). What is unusual here?

2. Use the established result, limx!0
sinx

x
= 1, together with judicious substitution, to evaluate

each of the following limits.

(a) lim
x!0

sin(3x)

⇡x
; (b) lim

x!0

sin(3x)

sin(⇡x)
; (c) lim

x! 1
2

cos(⇡x)

2x� 1

-2

-1

1

2y

-2 -1 1 2
x

3. With f(t) = sin 4⇡t and g(t) = 2 cos 3⇡t, verify that the Lis-

sajous curve traced by the equations x = f(t) and y = g(t)
(shown in part) goes through the origin (0, 0) when t = 0.5.

(a) Even though g(0.5)
f(0.5) makes no sense, g(t)

f(t) does make sense
for most other values of t, and the ratio approaches a
limiting value m as t approaches 0.5. Find m. What is
its significance? It will help to think of g(t)

f(t) as g(t)�0
f(t)�0 .

(b) As t approaches 0.5, the ratio of derivatives g
0(t)

f 0(t) ap-
proaches the same limiting value m. Why could this
have been expected?

4. (The first form of) L’Hôpital’s Rule. Let a be a real number and u be a positive real number.
Functions f and g are di↵erentiable functions in the (open) interval (a� u, a+ u). Suppose

that f(a) = 0 = g(a). If lim
t!a

g0(t)

f 0(t)
exists, then

lim
t!a

g(t)

f(t)
= lim

t!a

g0(t)

f 0(t)
.

Explain why l’Hôpital’s Rulemakes sense by considering a curve defined parametrically. (Note
that a formal proof is much harder and will be developed shortly.) Identify a few examples
of indeterminate forms we worked on recently and apply l’Hôpital’s Rule to evaluate them.

5. Sketch the graph of x = g(y) = y
3

2 + y

2 � 1. Find an equation of the line that is tangent to
the graph of x = g(y) at (�1, 0).
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Calculus 1 133

6.9 Substitutions and trigonometry in Calculus (part 5)

1. In geometry, an envelope of a family of curves in the plane is a curve that is tangent to each
member of the family at some point. You can check out the illustrations of this definition at
en.wikipedia.org/wiki/Envelope_(mathematics). What is the envelope for the family of
segments PQ with P on the x-axis and Q on the y-axis with PQ = 1? (You might want to
raw segment PQ many times.)

The graph of this envelope is called astroid. It is a type of cycloid, this curve is traced by a
point on a wheel that rolls without slipping around the inside of a circle whose radius is four
times the radius of the wheel – to be shown in the near future. Leibniz studied the curve in
1715. (Do not mix up astroid and asteroid which is a small, planet-like member of our solar
system.)

-1

1

y

-1 1

x

P

2. Suppose that P = (a, b) is a first-quadrant point on the curve

x
2
3 + y

2
3 = 1. The line tangent to the curve at P crosses the

x-axis at Q and the y-axis at R. Show that Q =
⇣
a

1
3 , 0

⌘
.

Show that the y-coordinate of R, can be expressed in terms
of b alone. Show that the length of segment QR does not
depend on where P is on the curve. Finally, explain the name
of this curve.

3. (Continuation) Find parametric equation of the curve by first

rewriting the equation as
⇣
x

1
3

⌘2
+
⇣
y

1
3

⌘2
= 1. Express the co-

ordinates for P,Q,R parametrically and determine the length
of QR.

4. Make up an example of a di↵erential equation whose isoclines are parallel to the x-axis, and
whose slopes vary between �2 and 2, inclusive. Sketch some of the solution curves. If you
can, find equations to describe them.

5. Evaluate each of the following.

(a)
Z 1

0

1

x2 + 1
dx (b)

Z 1

0

1

x2 + 4
dx (c)

Z 1

0

1

x2 + 2x+ 5
dx.

en.wikipedia.org/wiki/Envelope_(mathematics)
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Calculus 1 137

6.13 A short review – practice set 2

1. When asked to find the antiderivative of p(x) = sinx cosx, Ronaldo got R1(x) = 1
2 sin

2 x,
Ronaldinho got R2(x) = �1

2 cos
2 x, and CR7 got R3(x) = �1

4 cos 2x. Explain each of their
methods. How do functions R1(x), R2(x), R3(x) relate to each other?

2. Find each of the following.

(a)
d
ÅZ

x

3
t
p
1 + t2 dt

ã

dx
(b) Dx

ÅZ
x

4
sin t(1 + cos t)3 dt

ã

3. Consider the di↵erential equation
dy

dx
=

1� x

y
with y > 0. Let y = f(x) be a particular

solution to the given di↵erential equation with the initial condition f(4) = 4.

(a) Use Euler’s method, starting at x = 4 with two steps of equal size, to approximate f(5).

(b) Find an expression of this particular solution y = f(x). (To check if your answers make
sense, the exactly value of f(5) and the estimation value of f(5) should be reasonably
close to each other.)

(c) For some constant c, line y = c is tangent to the graph of y = f(x). Find the coordinates
of the tangent point. Determine whether f has a local maximum, local minimum, or
neither at this point.

4. A wheel of radius 1 is centered at the origin, and a rod AB of length 3 is attached at A to
the rim of the wheel. The wheel turns in a counterclockwise direction, one rotation every 2⇡
seconds, and, as it turns, the other end B = (x, 0) of the rod is constrained to slide back and
forth along a segment of the x-axis. The top figure shows this apparatus when t = 0, and
t = 1.02 produces the bottom figure. Verify that, for any time t, the position of B is given
by x = cos t+

p
9� sin2 t. When is B moving faster — when A is at the top of the wheel or

when the rod AB is tangent to the wheel? Calculate
dx

dt
to find out.

-1

1

y

-1 1 2 3 4

x

A B

-1

1

y

-1 1 2 3 4

x

A

B

5. For n an integer, evaluate

lim
n!1

Ñ
1p

n2 � 02
+

1p
n2 � 12

+
1p

n2 � 22
+ · · ·+ 1»

n2 � (n� 1)2

é
.
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144 Calculus 1

6.20 Some abstract concepts of Calculus (part 5)

1. Convince a skeptic that
Z

b

a

kf(x) dx is equivalent to k
Z

b

a

f(x) dx when k is a constant.

2. Kelly completed a 250-mile drive in exactly 5 hours—an average speed of 50 mph. The trip
was not actually made at a constant speed of 50 mph, of course, for there were tra�c lights,
slow-moving trucks in the way, etc.

(a) Nevertheless, there must have been at least one instant during the trip when Kelly’s
speedometer showed exactly 50 mph. Give two explanations—one using a distance-
versus-time graph, and the other using a speed-versus-time graph. Make your graphs
consistent with each other!

(b) A student drew the line that joins (0, 0) to (5, 250), and remarked that any actual
distance-versus-time graph must have points that lie above this line and points that lie
below it. What do you think of this remark and why?

(c) Another student thought that the area between the distance-versus-time graph and the
time axis was a significant number. Explain what you think of this idea.

3. Find Dx

ÇZ
x
2

4

sin t

t
dt

å
.

4. The function f is continuous on the closed interval [a, b] and di↵erentiable on the open interval
(a, b). Consider the following statement:

If f is increasing on [a, b], then f 0 � 0 in the interval (a, b).

(a) Prove this statement is true.

(b) What is the converse of this statement? Show that the converse statement is also true.

(c) What is analogous statement for a decreasing function?

5. The Mean Value Theorem for Integrals says: If f is a function that is continuous for a  x  b,

then there is a number c between a and b for which f(c) · (b� a) =
Z

b

a

f(x) dx. Interpret this

statement. Then, by applying the Fundamental Theorem of Calculus, show that the equation
is actually a consequence of the Mean Value Theorem for Derivatives.
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